Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips.

نویسندگان

  • Simon Song
  • Anup K Singh
  • Brian J Kirby
چکیده

Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is used to integrate protein concentration with an electrokinetic injection scheme. Upon application of voltage, linear electrophoretic concentration of charged proteins is achieved at the membrane surface because buffer ions can easily pass through the membrane while proteins larger than the molecular weight cutoff of the membrane (>5700) are retained. Simple buffer systems can be used, and the concentration results constitute outward evidence that the uniformity of buffer ion concentration is maintained throughout the process. Local and spatially averaged concentration are increased by 4 and 2 orders of magnitude, respectively, upon injection with moderate voltages (70-150 V) and concentration times (100 s). The degree of concentration is limited only by the solubility limit of the proteins. The porous polymer membrane can be used repeatedly as long as care is taken to avoid protein precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes.

Chip-level integration of microdialysis membranes is described using a novel method for in situ photopatterning of porous polymer features. Rapid and inexpensive fabrication of nanoporous microdialysis membranes in microchips is achieved using a phase separation polymerization technique with a shaped UV laser beam. By controlling the phase separation process, the molecular weight cutoffs of the...

متن کامل

Microchip-based Dialysis of Protein Samples Using Photopatterned Nanoporous Membranes

A novel method for flexibly implementing sample dialysis on microchips is introduced. Nanoporous polymer membranes (5-20 pm thickness) with up to 1OOO:l aspect ratio are fabricated in-situ on silica microchips via photopatterned phase-separation polymerization. These membranes enable selective diffusion of molecules smaller than a cutoff specified by the membrane pore size. Diffusion measuremen...

متن کامل

Fouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins

One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...

متن کامل

Nanoporous membranes enable concentration and transport in fully wet paper-based assays.

Low-cost paper-based assays are emerging as the platform for diagnostics worldwide. Paper does not, however, readily enable advanced functionality required for complex diagnostics, such as analyte concentration and controlled analyte transport. That is, after the initial wetting, no further analyte manipulation is possible. Here, we demonstrate active concentration and transport of analytes in ...

متن کامل

Ordered Nanoporous Alumina Membranes Formed in Oxalic/Phosphoric Acid Using Hard Anodization

Highly self-ordered alumina nanopore arrays were fabricated using hard anodization technique in different mixtures of oxalic/phosphoric acid. The phosphoric acid concentration was varied from 0.05 to 0.3 M while the oxalic acid concentration was changed between 0.3 and 0.4 M. The self ordered nanoporous arrays were obtained in anodization voltage changing from 130 to 200 V. The interpore distan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 76 15  شماره 

صفحات  -

تاریخ انتشار 2004